Microphthalmia Transcription Factor:
a Specific Marker for Malignant Melanoma

Vachtenheim J.¹, Borovanský J.²

¹Laboratory of Molecular Biology of the University Hospital Na Bulovce, Charles University in Prague, Czech Republic;
²Institute of Biochemistry and Experimental Oncology of the First Faculty of Medicine, Charles University in Prague, Czech Republic

Received July 22, 2004, Accepted August 31, 2004

Abstract: The transcription factor microphthalmia (MITF) is required for the formation of normal melanocytes during embryonic development and for the expression of pigment cell-specific markers, which are the downstream transcriptional targets of MITF. It also seems to be crucial for the survival of malignant melanocytes. The special interest of this review is the possible utility of MITF as a marker of malignant melanoma. Melanocyte-specific isoform of MITF appears to be a unique molecule in the differential diagnosis of melanocytic tumors.

Key words: MITF – Melanoma – Melanocyte – Microphthalmia – Transcription

This work was supported by a grant from IGA (NR/8026-3), Ministry of Health, Czech Republic.

Mailing address: Jiří Vachtenheim, MD., Laboratory of Molecular Biology, Clinic of Pneumology, Third Faculty of Medicine, Charles University and University Hospital Na Bulovce, Budínova 2, 180 00 Prague 8, Czech Republic, Phone +420 266 082 272, Fax: +420 284 840 840, e-mail: jivach@upn.anet.cz

© Charles University in Prague – The Karolinum Press, Prague 2004
Introduction

Several cell lineages require the expression of the microphthalmia-associated transcription factor (MITF) to develop normally during embryogenesis. These include melanocytes (derived from the neural crest), mast cells, cells of the retina pigment epithelium (RPE), and osteoclasts. MITF has been found to be associated with human Waardenburg syndrome type IIA [1] and many different mutant alleles at the MITF locus have been described in mice with similar phenotypes (defects of pigmentation and hearing, smaller eyes, and osteopetrosis) resembling the human disease [2, 3]. In adult melanocytes, MITF is believed to activate transcription of genes required for melanogenesis, such as tyrosinase, TRP-1 and TRP-2 (tyrosinase-related proteins –1 and –2), [4, 5]. Moreover, MITF activates transcription from promoters of a set of genes which are likewise specific for melanoma cells but are not directly involved in pigment synthesis, like MLANA/MART1/Melan-A, gp100/SILV (also named PMel17), and melastatin/TRPM1 [4, 6, 7, 8]. MITF is a bHLH-LZ (basic-helix-loop-helix-leucine zipper) type transcription factor that binds to E-boxes found in promoters of these pigment cell-specific genes. In almost all studies, only the reporter assays were employed to elucidate how MITF transactivates its target genes. Transcription from endogenous promoters of known MITF targets associated with melanocytic differentiation has only begun to be addressed. Gaggioli et al. [9] recently observed an inhibition of expression of endogenous tyrosinase and TRP-1 genes in melanocytes and mouse B16 melanoma cells after the transfer of a dominant negative MITF mutant lacking the N-terminal transactivation domain. These authors confirmed the involvement of MITF in the activation of these genes in the chromatin context. Thus, apart from the role of MITF in the proper formation of embryonic pigment cells [10], it mediates an essential transcriptional activity in maintaining the differentiation of mature melanocytes, and the function is preserved upon the malignant transformation. As for the survival of developing melanocytes in the mouse embryo, recent data indicate that MITF can play a crucial role in the survival of melanoma cells. MITF has been shown to mediate the signals of the wnt/β-catenin signaling pathway, which is often upregulated in melanomas, to downstream effectors (one of which might be the bcl-2 gene but others are unknown), thus linking aberrant signaling to deregulated proliferation and/or increased survival [11, 12].

Only MITF-M isoform is melanocyte-specific

MITF is expressed as multiple splicing isoforms (termed A, B, C, D, E, H, M, mc) each of which is transcribed from a different, tissue-specific promoter. These isoforms, distinguishable by RT-PCR (reverse transcription-polymerase chain reaction) analysis, differ only in the first, isoform-specific exon, which is linked to common downstream exons [13]. Some of these isoforms are specific for the mast cells (E and mc), or are more ubiquitously expressed (A, C, and H). MITF-M form is expressed only in melanocytes and melanoma cells [13–16]. How the unique
N-terminus in MITF affects the transactivation by the whole protein is less clear but it appears to be dispensable for the ability of MITF to transactivate the tyrosinase promoter-reporter, and the mast cell-specific N-terminus linked to common exons inhibited the activation of this promoter [16, 17]. The melanocyte-specific MITF promoter is positively regulated by at least four transcription factors: CREB, an effector of the cAMP signalling pathway, Sox10, a high mobility group type DNA-binding domain transcription factor, LEF-1, a component of the Wnt signalling pathway involving β-catenin, and Pax3, a paired box domain and a homeodomain-containing transcription factor [reviewed in 5]. The sequences and localization of the binding sites in the mouse and human promoter are almost identical suggesting a very similar regulation in both species. The transcription factors bind to their consensus sites that are in a close proximity within the MITF promoter and some of them (e.g. Pax3 and Sox10) may act in a synergistic fashion [reviewed in 5].

Immunohistochemical detection of MITF in malignant melanoma

Immunohistochemical staining of melanoma specimens with the anti-MITF antibody (D5) revealed positivity in virtually all cases [18]. This suggested that MITF could be a promising new marker for primary and metastatic melanomas. The staining was nuclear and skin melanocytes, nevi, and dysplastic nevi were also positive. Clearly, the antibody to MITF was demonstrated to be a more specific tool than the widely used HMB-45 antibody (directed to gp100) and the anti-S100 protein (a calcium-binding protein family member) antibody. A number of subsequent studies evaluated the utility of MITF in the immunohistochemical diagnosis of melanoma. Most of the studies showed that the MITF antibody could be a valuable tool in the diagnosis of melanocytic lesions, being a useful supplement to the detection of gp100, MLANA, or tyrosinase [19–23]. In one report, the expression of MITF correlated with improved survival of melanoma patients [24]. These authors observed that the higher was the number of MITF positive cells in a primary tumor sample, the better was the prognosis.

Melanomas that are more difficult to diagnose histologically, like amelanotic or desmoplastic cell melanomas, were also MITF-positive but the frequency of positive samples was lower [19, 25, 26]. In other studies, however, MITF failed to positively stain a large portion of desmoplastic and spindle-cell melanomas [23, 27–29]. Desmoplastic melanoma is a subtype characterized by a collagenous stroma and spindle-shaped cells which often lack conventional melanoma markers but are S100-positive [30]. It thus appears that this melanoma subtype lacks the expression of MITF, at least in a subset of cases. Previously, we detected three melanoma cell lines which did not express the MITF-M, but expressed low amounts of MITF-A, however it was unknown whether the original specimens were histopathologically diagnosed as desmoplastic [31]. It is further important that MITF has not been found to mislocalize to the cytoplasm in melanomas while
a rare cytoplasmic staining was seen in non-melanoma tumors like breast carcinomas, thus distinguishing a possible nonspecific staining; a false nuclear positivity in non-melanomas was extremely rare [18, 20]. In other reports, the D5 MITF antibody has been found not to be sufficiently specific for melanoma cells and the immunoreactivity was observed in several other cell types (e.g. histiocytes, lymphocytes, osteoclasts, and macrophages) rendering the melanoma diagnosis inconclusive in many cases [28, 32]. As the D5 monoclonal antibody, used in most immunohistochemical studies, is directed to the part of the molecule encoded by exons common to all MITF isoforms [33], the lack of specificity seen in these studies could be due to the staining of ubiquitous isoforms like A and H. In many non-melanocytic human tumor cell lines, MITF-A has been frequently detected [31]. However, an antibody specific to MITF-M is unavailable so far, thus precluding a possible more precise immunohistochemical diagnosis of melanocytic cells.

MITF-M in melanocytic tumors
The presence of a tissue-specific first exon in MITF enables the discrimination of isoforms by using the first exon-specific primers in the RT-PCR analysis. The MITF-M has been successfully detected in several reports by this method, confirming its melanocyte origin and absence in other tissues [13, 15–17, 31, 34–36]. The MITF-M isoform has been recently detected also in circulating melanoma cells in blood of melanoma patients, revealing the usefulness of this estimation for the detection of distant metastases, even in cases where tyrosinase is negative in the same sample [36]. The expression of MITF-M has been investigated in clear cell sarcoma (CCS), a malignant tumor sharing many features with melanoma. This unusual tumor (also named melanoma of soft parts) with a characteristic chromosomal translocation creating the chimeric EWS/ATF1 oncogenic protein has a predilection for the deep soft tissues of lower extremities and is associated with melanocytic pigmentation. CCS cells were shown to be MITF immunoreactive [37, 38] and the MITF-M was indeed present in cells of CCS, further confirming the close relationship of these two malignancies [35, 38]. Uveal melanomas, like tumors arising from the skin, were also shown to express the MITF-M isoform [39]. Interestingly, the MITF-M isoform was associated with the specific spindle-cell type morphology when the MITF-M-lacking human melanoma cells were transfected with this isoform and grown in SCID (severe combined immunodeficiency) mice; the growth of these MITF-M-expressing tumors in SCID mice was retarded when compared to controls [34]. Thus, the MITF-M expression may be linked to a specific phenotype in an experimental model. Although exceptionally, some melanomas and melanoma cell lines have the MITF-M repressed [34, 40]. It was shown that the re-expression of MITF-M ectopically in such cell lines could affect the phenotype (see above), but the restoration of the melanocyte-specific differentiation including the induction of silenced markers and MITF transcriptional targets could not be achieved in these
MITF-negative cells [34, 40]. Therefore, the chromatin-organized target promoters for MITF, which are otherwise MITF-sensitive in differentiated melanoma cells, are refractory to ectopically delivered MITF in MITF-negative melanoma cell lines. These melanomas thus resemble the non-melanocytic tumors rather than the original melanocytes [40].

Conclusion
Given the central role of MITF in the development and differentiation of melanocytes, it is not surprising that the most frequently used markers for melanoma diagnosis are the transcriptional targets of MITF (gp100, MLANA, tyrosinase) or MITF itself. These proteins are also the most specific for melanomas and the melanocyte-specific isoform, MITF-M, is an extremely specific marker for both normal and malignant melanocytes, confirming the melanoma diagnosis and representing an aid in the diagnosis of clear cell sarcoma, some amelanotic melanomas, and rare atypically located non-skin and non-ocular melanomas.

References
10. OPDECAMP K., NAKAYAMA A., NGUYEN M. T., HODGKINSON C. A., PAVAN W. J.,

Vachtenheim J., Borovanský J.

25. KOCH M. B., SHIH I. M., WEISS S. W., FOLPE A. L.: Microphthalmia transcription factor and

MITF as a Melanoma Marker

Vachtenheim J., Borovanský J.